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The solution to flows with a vortex discontinuity is widely used in hydrodynamics of ideal 
fluids. They occur, e.g., in problems involving the matching of potential and vortical flows 
[i]. The present paper considers the stability of such flows in a plane. The integral of 
linear• equations of motion has been obtained in a quadratic form for the disturbance 
velocity field, vortex, and normal displacement of the surface of discontinuity. Conditions 
for a positive determinancy of this form lead to sufficient conditions for stability in 
rms terms, extending the known solutions [2-4] for flows with continuous vorticity. Examples 
are given for stable flows including flows in curvilinear slot, plane-parallel, and circular 
flows. Conditions for nonlinear instability are given for the latter two types of flows with 
piecewise constant vorticity. 

I. Basic Flow and Class of Disturbances. Plane flows of an ideal, incompressible, homo- 
geneous fluid are considered in the region T with a stationary impermeable boundary ST. The 
results are valid for regions �9 of sufficiently general type, though, in particular, we con- 
sider a curvilinear ring (circular slot), whose boundary is comprised of closed contours R+ and 
R_. In cartesian coordinates x, y, the stationary flow field has been specified with x- and 
y-components of velocity, stream function, vorticity, and pressure: 

U(x), V(x), ~(x), ~ ) ,  p(x), x =  (x, v), U =  -~y~  (1 .1)  
V = ~ ,  ~ - - V  x -  U v. 

The subscript with independent variables denotes partial derivatives. It is assumed that U 
and V are continuous, and their first and second derivatives are continuous almost everywhere 
in ~ except R determined by the curves where ~ has a finite discontinuity. In particular, 
the flow with closed streamlines ~ = const is investigated, with each streamline enclosing 
the inner boundary of the ring. The only closed contour of the discontinuity R is one of 
the lines ~ = const and divides T into two rings: T+ and ~_. The positive sign denotes the 
region that is to the left as one moves along R in the direction of the velocity vector. 
The superposition of disturbances transposes the velocity field U = (57 , V), pressure P, 
regions ~• and their contact boundary R into u* =(u*, v*), p*, ~ and R*. The analysis 
of the stability problems is carried out with the technique adopted from problems on two- 
phase flows: independent solutions are obtained in the regions ~$ with conditions for their 
equality at the contact line R*. In accordance with this field (I.I), u * and p~ are 
specified'independently in T+, T_ and ~$, ~ which is implied without the explicit intro- 
duction of U• u~ etc. 

In ~• functions (I.i) satisfy equations 

~ V = H ~ , ~ U = - - H ~ ,  U ~ + V y = 0 ,  

H=-  P + Q~/2, Q2= u 2 + v ~, 

which lead to the presence of functional relations ~ = ~(~). 
satisfied on R• 

(n is normal to 8~). 
on R, 

( 1 . 2 )  

The no-slip condition is 

U.n = 0 ( i . 3 )  

Using square brackets to denote discontinuity of hydrodynamic fields 

[ u ]  = [ v ]  = [ p ]  = [ v p ]  = [ ~ ]  = o ,  ( 1 . 4 )  

[ ~ ] ~ + - -  ~_4:0,  [Q']=/=0, Q'-~d~/d~. 

The class of disturbances, in which the stability problem is being investigated, is 
selected on the basis of the same requirements of smoothness which is satisfied by the 
basic flow (i.i). It is assumed that the total velocity fields u'are continuous and have 
conE1nuous first and second derivatives in ~$. ONly the continuity of the velocity field u* 
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is required on the moving curves R*. It thus implies that if the initial conditions for 
the velocity u* are chosen to be continuous, then there will be no contact discontinuity 
at any given time [5]. The continuity condition on both the velocity components on R* is 
somewhat stronger than the kinematic and dynamic Conditions: it coincides with them for the 
given class of continuous fields u*. Thus, we assume 

[u*]* - [~*]* = 0, (1.5) 

where the star outside the bracket denotes that the discontinuity is computed on R*. 

2. Lagrangian Displacement and Linearization Procedure. Linearization in problems with an 
unknown moving boundary R* is often carried out in Eulerian system with the "transposal" 
of boundary conditions from R* to R. Difficulties then arise in following the very Eulerian 
disturbance fields in the region between R* and R, as well as in the interpretation of the 
"transposal" procedure. A linearization technique [6] free from these difficulties is des- 
cribed here. It is based on the consideration of a L@grangian description of the disturbed 
flow with a subsequent replacement of Lagrangian system of coordinates by Eulerian system 
of coordinates for the fluid particled in the undisturbed flow. 

Consider separately, fluid occupying the region ~+, T$. Let the undisturbed flow (i.i) 
of fluid particles be described by the relation between the Eulerian x and Lagrangian a coor- 
dinates: 

x = x(a, t), a = x(a, 0), U(a, t ) ~  ax(a, O/Ot ( 2 . 1 )  

(x, as well as a , are determined in ~+). After the superposition of disturbances, the same 
fluid occupies another region ~$, and its motion is described by other functions of the same 
variables a, t: 

x* = x*(a~ t)~ u* ~- Ox*(a, t) lat~ ( 2 . 2 )  

in  which  x* i s  d e t e r m i n e d  in  ~$. The d e p e n d e n c e  o f  x and x* on one and t h e  same L a g r a n g i a n  
coordinates a indicates the establishment of correspondence between fluid particles in mo- 
tion (2.1) and (2.2) x*(a, t), as well as x(a, 0, satisfy equations 

o x m Ox m op* det = t. ( 2 . 3 )  
Ot 2 Oa h Oa h 

The f o l l o w i n g  n o t a t i o n s  a r e  u sed  f o r  s i m p l i c i t y :  ( x l ,  x 2 ) ~ ( x ,  Y),  (Uz,  U2)~(U, V) ,  e t c .  Re- 
p e a t e d  indices with vectors imply summation. The Lagrangian displacement field ~ , which sub- 
sequently plays the crucial role, is determined by 

~(a, t) ~ x*(a, ~) - x(a, l). ( 2 . 4 )  

Now, u s i n g  t h e  i n v e r s e  o f  f u n c t i o n  ( 2 . 1 )  a = a(x, t), Eqs .  ( 2 . 2 ) - ( 2 . 4 )  can  be r e w r i t t e n  
in terms of independent variables x, t. Equations (2.4) gives the relation x*(x, t) = x -~ 
%(x, t), which means that the particle in the basic flow with Eulerian coordinate x from 
�9 + has a coordinate x* in the disturbed flow from ~$. It follows from the determination 
of velocity (2.2) 

0 D%(x, ~ ) =  u*(x § %, t ) - - U ( x ,  t ) ~  6u(x, t), ( 2 . 5 )  D Ix + % (x, t)] = u* (x*, t), D ~ - ~  + U~ 0x-~* 

where 6u(x , t )  is the Lagrangian velocity increment, i.e., the difference between the velo- 
city of the one and the same fluid particle in the disturbed and the undisturbed flows. The 
substitution of the variables in (2.3) gives 

0@ act ~,h +b--xxh~ i,  ( 2 . 5 )  De~i + 0~h/A + D~h) 0z i 
a x  i \ k , 

in  which  5p ( x ,  t )  i s  t h e  L a g r a n g i a n  p r e s s u r e  i n c r e m e n t  such  t h a t  p * ( x * ,  t ) ~ P ( x ,  t )  + 5p (x ,  
t ) ;  6 i k  i s  a u n i t  m a t r i x ;  A k = UmSUk/SX m = - S P / S x  k.  E q u a t i o n  ( 2 . 5 )  s h o u l d  be s u p p l e m e n t e d  
w i t h  n o - s l i p  b o u n d a r y  c o n d i t i o n s  on 8T and m a t c h i n g  c o n d i t i o n s  ( 1 . 5 )  w i t h  s i m i l a r  s o l u t i o n s  
f rom r Choos ing  t h e  p o i n t  x on R and u s i n g  Eq. ( 2 . 5 ) ,  t h e  c o n d i t i o n  ( 1 . 5 )  can be w r i t t e n  
a s  

[u*(x +%,  0 ] *  = [6u(x, t)] = D[~(x,  t)] = 0 .  ( 2 . 7 )  

I n t e g r a t i n g  t h e  l a s t  e q u a l i t y  and u s i n g  L a g r a n g i a n  c o o r d i n a t e s  f rom t h e  two r e g i o n s  o f  R g i v e  

[~ ] - -  [~] = O, ~ = (~, , i ) - -  (~,, ~) .  ( 2 . 8 )  
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Then, after specifying the initial conditions for the determination of functions ~• ~, t) , 
we obtain an initial boundary-value problem in the regions with fixed boundaries R• R. 

A linearized version of this problem appears as follows. The following equations are 
solved 

A O~h_ 08p O~k - - 0  ( 2 . 9 )  
D ~ i  + ~k ~ -- - -  Ox i ,  Oz k 

with boundary conditions 

~-n = 0 (2.10) 

on 8T and matching conditions (2.8) on R. 

The problem (2.8)-(2.10) can be reduced to a form that is identical with linearized 
Eulerian formulation. In order to achieve this, new fields u(x, t) and p~, ~ are introduced, 
and these are determined by the following equations 

~ u = D ~ - - u  + (~V)U, @ ~ p  + (W)P. ( 2 . 1 1 )  

The substitution of (2.11) in (2.9) leads to equations 

Du --1- Uxu + Uuv = --Px~ Dv  -[- Vxu -[- Vyv = --Pu* ( 2 . 1 2 )  

ux + ~ = O, u =  (u~ v). 

E l i m i n a t i n g  p f r o m  ( 2 . 1 2 )  and u s i n g  (1 .2) ' ,~we g e t  an e q u a t i o n  f o r  w~v x - Uy: 

D ~ + ~ x U  + Quv ~ O. ( 2 . 1 3 )  

Equations (i.3), (2.10), and (2.11) lead to the boundary condition on 0~ 

u.n = 0. (2.14) 

The following conditions on R arise as a result of (2.7): 

[u + (~V)U] = 0. ( 2 . 1 5 )  

It is convenient to introduce unit normal v and tangential~vectors to the stream line (i.i) 
and Lagrangian displacement N along the normal to it: 

Qv = ( - V ,  U), Qa = (U, V)~ N ~ - ~ - v .  ( 2 . 1 6 )  

R e l a t i o n s  on R f o l l o w  f rom ( 1 . 4 ) ,  ( 2 . 8 ) ,  and ( 2 . 1 5 ) :  

[u-v] : [p] : 0, [u .a]  = N[~ ] .  ( 2 . 1 7 )  

The e q u a t i o n  D(Vr - Uq) = Vu -Uvx i s  q u i t e  as  e a s i l y  v e r i f i e d  and r e w r i t t e n  in  t h e  fo rm 

D(QN) : Q u . v  ( 2 . 1 8 )  

and denotes linearized kinematic conditions. 

Thus, in terms of (2.11), the problem of describing small disturbances consists in the 
solution of Eqs. (2.12) in fixed regions ~• with boundary conditions (2.17), (2o18) on R+ 
and R. In this type of description, the Lagrangian displacements e~ist explicitly only 
through N on R. Equations (2.12) structurally coincide with linearized equations for Euler- 
ian disturbances, and the relation (2.15) coincides with (1.5), which is obtained as des- 
cribed before in the procedure for the "transposal" of conditions from R* on R. We note 
that the fields u, p are actually Eulerian disturbances at those points x where the very 
concept of Eulerian disturbances has meaning. For clarification, it is sufficient to des- 
cribe the determination of Eulerian velocity disturbances as a difference of velocities 
in the disturbed and basic flows at one and the same location x* from ~$: 

a ' ~ * ,  t) ~ u * ~ * ,  t) - -  U(x*) : 8u~,  t) ~- U ~ ,  t) - -  U ~ * , 0 ,  ( 2 . 1 9 )  

where  6u (2.5) and x* = x -{ -~  h a v e  been  u s e d .  The e x p r e s s i o n  ( 2 . 1 9 )  i s  b a s e d  on t h e  a s s u m p t i o n  
t h a t  t h e  p o i n t  x* b e l o n g s  t o  T+. I n  t h i s  c a s e  t h e  e x p a n s i o n  o f  t h e  f u n c t i o n  U(x + ~, t ) ,  
u'~ + ~, t) in a series near the point x and subsequent linearization lead to the relation 
u'~u--(~V)U, which, when compared to (2.11), result in u' : u. If, however, the point 
x* = x ~ ~ is outside ~+, then u and p cannot be traced as Eulerian disturbances, and their 
interpretation follows from Eqs. (2.11). In particular, as a result of this the discon- 
tinuity in the tangential component of u on R (2.17) will not appear as a discontinuity in 
velocity disturbance field. 
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As already mentioned, problems of the type formulated for the fields u, p are usually 
obtained directly by linearization in Eulerian coordinates [7, 8]. The need for paying 
attention to (2.11) arises only for detailed analysis of the meaning of the fields u, p and 
the relations they satisfy. Hence, the problem (2.12), (2.14), (2.17), and (2.18) is 
treated further as an independent problem, and the fields u, p, and m are called disturbances 
in velocity, pressure, and vorticity respectively. 

3. Integral of the Linear Problem. The following divergent relation is obtained as 
a result of Eqs. (1.2), (2.12), and (2.13) 

DE~2 + (up + vA + Ue)x + (vp - -  uA + Vs) u = 0,: E---- u ~ + v 2 + d W o 2 / d ~  A ~-- Vu - -  Uv~ e-- -  (u 2 + v~)/2, 

where it is assumed that ~' # 0. If [~] [~'] = 0 in (1.4), then the conservation of ~i) 
following functional results from (1.3), (2.14), and (3.1): 

~ E d x d y  = const. (3.2) 

This result is a reformulation of the expressions in [2-4]. If the known generalized Ray- 
leigh criterion on inflection point ~' # 0 is satisfied in T, then (3.2) results in flow 
stability in the rms sense. Extending the integral (3.2) to the problem with discontinui- 
ties a and g' leads to 

E d x d y -  [fl] S QN2dl = const, (3. 3) 
R 

where T implies sum of the integrals along T+ and ~_; the positive direction for integration 
along R is based on the vector U on R. The proof for (3.3) is carried out by direct compu- 
tation of the derivative dl/dt using (1.3), (2.14), (2.17), (2.18), and (3.1). 

For the important class of flows with piecewise constant vorticity ~'50, and hence E 
in (3.1) and (3.3) loses significance. In this case the integral for the linear problem 
can be obtained at the expense of narrowing the class of disturbances. 

The vorticity equation (2.13) using (2.11) is brought to the form D(m + $flx + Nfly) = 0. 
If the initial condition is chosen as 

= - - ~ x  - -  ~ y  = ~ ' Q N ~  (3.4) 

then this equality will be satisfied for all t. The function N in (3.4) is the Lagrangian 
displacement (2.16) normal to any streamline of the flow (i.i), and not only to R. The equa- 
tion (3.4) indicates the limitation of the class of disturbances to the so-called "equivorti- 
cal" [4] characterized by the fact that the circulation is constant for each fluid particle 
and the vorticity field changes only due to the replacement of these particles. The interal 
(3.3) for this narrower class of disturbances remains valid) only E in (3.1) takes the follow- 
ing form in accordance with (3.4) 

E =  u 2 + v 2 + ~ 'QzN 2. ( 3 . 5 )  

When ~ 0 ,  ( 3 . 5 )  g i v e s  E = u 2 + v 2, and from ( 3 . 4 )  i t  f o l l o w s  t h a t  ~ 0 .  Thus,  i f  e . g . ,  in  
z+ there ~ = ~+ = eonst, then, assuming potential flow in ~, we again get the integral 
(3.3) in which we use the equation E = u~ + v 2 while integrating along ~+. If ~ = ~- = 
const also in ~_, then in both regions m~0, and (3.3)is reduced to the form 

I = S ( ~  + vz) dxdy - -  [fl] y QN2dl = const. (3. 6) 
% R 

4. General Stability Conditions. The effect of types of stable flows in the rms sense 
is then reduced to finding the sign convention for the quadratic form in the integrals (3.3) 
and (3.6), whose nature determines the stability. The determination of the deviation of 
the disturbed flow from the undisturbed flow, on the basis of the integrals I from the equa- 
tion I(t) e const, leads to stability in the Liapunov sense: for any number g > 0, there 
is another number 6 > 0 such that when I(0) < 6, for all t, I(t) < c. It is especially im- 
portant to consider two cases here. Firstly, the presence of Lagrangian displacements N 
of the surface of discontinuity [~] ~ 0 is a significant difference from stability condi- 
tions for flows with smooth vortex [2-4]. Secondly, it follows from (3.3) that the pres- 
ence of weak discontinuities in circulation [~] = 0, [~'] ~ 0 leads to the same integral 
(3.2) that is obtained for smooth fields a, and, consequently, to the same stability cri- 
teria of [2-4]. 
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The integral (3.3) is positive definite if in ~+ and ~_, ~' > 0, and on R, [~] < 0. If 
a piecewise continuous function ~(~) is introduced in the entire region T, then these re- 
quirements indicate that the circulation ~ should monotonically increase with ~. Similarly, 
the integral (3.6) is positive definite if the piecewise constant function ~(~) does not 
increase monotonically. In both cases the flow in a closed ring is stable in the above des- 
cribed sense. 

At the same time the derivation of integrals (3.3) and (3.6) is based only on the pres- 
ence of the divergent form (3.1) and boundary conditions (1.3), (2.14), and (2.17). Hence, 
Eqs. (3:3) and (3.6) are valid for flows (I.I) with practically any geometry, with any num- 
ber and location of discontinuities R, and can be used as a proof of stability. However, 
it appears that if the flow is divided into a number of simply connected regions with closed 
streamlines, then the conditions for the monotonica! increase of ~(P) identify an extremely 
narrow class of flows which do not include many problems of practical interest. For example, 
in the case of the known channel flow problem with separated outer flow and the formation 
of circulatory flow within the channel itself [i], integrals (3.3) and (3.6) are positively 
determined only when the outer flow is vortical with its circulation exceeding (in magnitude) 
the circulation in the circulatory region of the flow. If, however, the outer flow is Jr- 
rotational, then the sign of the surface integral in (3.6) is always negative. The same 
is true for the plane analog of a vortex ring (for a vortex pair with finite core circula- 
tions) and for the plane analog of Hill's vortex. 

Furthermore, in stable flows with monotonically increasing ~(~), disturbances N could 
increase near the stagnation point Q = 0. The important role of such points for specific 
flows has already been mentioned in [9]. 

5. Plane-parallel and Circular Flows. The most extensive class of sufficient condi- 
tions for stability can be obtained for flows with symmetry. For plane-parallel flow the 
region �9 is determined by the limit 0 < y < H, and the velocity field (i.i) has the form 
U = U(y), V~0 with a continuous function U(y). The circulation ~(y) is a piecewise contin- 
uous function. In the continuous segments ~-Uy and at the final set of points y = Yn(n = 
i, 2, 3,..., m), there are finite jumps [~]n # 0, which are conveniently determined here as 
[~]n~(yn + 0) - ~(Yn - 0). The integral (3.3) takes the form 

\ Tn Rn / 
E = u 2 + v 2 + ~ 2 U / L ~ v .  

In order to obtain the integral of the type (3.6), it is necessary to assume E = u 2 + v 2 
in (5.1). From (5.1) and Galilean invariance follows the conservation of the functionals 

X a = = const,  

dn / (5.2) 

Go = ~ [Uv]~ .f ~ 2dx = const.  
n Bn 

The i n t e g r a l  G o c c u r s  when Uyy ~ 0.  The s t a b i l i t y  o f  f l o w s  i n  t h e  rms s e n s e  f o l l o w s  f r o m  i t s  
c o n v e r s i o n  i n  c a s e s  when t h e  v a l u e s  o f  Uyy i n  a l l  i n t e r v a l s  o f  c o n t i n u i t y  T n and  [Uy] n a t  a l l  
j u m p s  i n  R n h a v e  t h e  same s i g n .  The i n t e g r a l  G o e x i s t s  f o r  t h e  p i e c e w i s e  l i n e a r  p r o f i l e  U ( y )  
a n d  i r r o t a t i o n a l  d i s t u r b a n c e s  w = 0.  I t s  f o r m  m a k e s  i t  p o s s i b l e  t o  d e t e r m i n e  t h e  s t a b i l i t y  
in cases where all discontinuities in [Uy] have the same sign. 

Thus, the generalization of Rayleigh's criterion [I0] for the stability of plane-parallel 
flows with continuous U(y), ~(y) to profiles with continuous U(y) but discontinuous ~(y) 
is the requirement of monotonical variation (increase or decrease) in the function ~(y). 

Flows with circular streamlines are analyzed in a similar manner. In polar coordinate 
system r, 0, the flow region is defined by the circular ring RI < r < R~. If U, V are the 
radial (r) and tangential (0) velocity components, then the flow is determined by the expres- 
sions U = U(r), V~0 with the continuous function U(r). The circulation ~(r) isa piecewise con- 
tinuous function. In the continuous regions ~ = (rR)r/r and at the end points rn(n = i, 2, 
3 ..... m), there are finite jumps [E]n # 0, which are conveniently determined as [~]n~(rn + 
0) - ~(r n - 0). The integral (3.3) takes the form 

I : ~ ( ~ E r d r d O  l-rnUn[Q]n !~N2dO) E=u2+vz+~zU/Qr" ( 5 . 3 )  
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In order to obtain an integral of the type (3.6), it is necessary to assume E = u 2 + v 2 in (5.3). 
Since the equations for plane flows of a homogeneous fluid and the no-slip boundary conditions 
at the circular walls are invariant to transformation into a rotational system of coordinates 
with arbitrary constant velocity [Ii], it follows from (5.3) that the condition for the conserva- 
tion of functions is 

J =  ~ [ 3 - ~ r r 2 d r d O + r n [ ~ ] .  N2dO , Jo =~-~ rn i f l l n  NdO. (5.4) 
\ ~n ~n ] n l~n 

The i n t e g r a l  J e x i s t s  when ~r  ~ 0 and J0 f o r  p i e c e w i s e  c o n s t a n t  f u n c t i o n s  f i ( r )  and ~ 0 .  As 
in the previous case, stability of circular flows with monotonically varying ~(r) follows 
from (5.4). 

The well-known Kelvin's vortex belongs to this class of flows for which U = ~0r when 
0 < r < a and U = ~oa~/r when a < r < ~. It follows from (5.4) that 

~N2dO = const, (5.5) 

where  t h e  i n t e g r a l  i s  t a k e n  a l o n g  t h e  b o u n d a ry  o f  t h e  v o r t e x  c o r e  r = a. The e q u a l i t y  ( 5 . 5 )  
i n d i c a t e s  s t a b i l i t y  o f  K e l v i n ' s  v o r t e x  r e l a t i v e  t o  d i s t u r b a n c e s  w i t h  ~ = 0. In  [12] t h i s  
r e s u l t  was found  u s i n g  s p e c t r a l  t h e o r y .  

6. I n t e g r a l s  of. E x a c t  S o l u t i o n s .  For  i n t e g r a l s  G 0 ( 5 . 2 )  and J0 ( 5 . 4 ) ,  i t  i s  p o s s i b l e  
t o  c o n s t r u c t  n o n l i n e a r  a n a l o g s  which  can be o b t a i n e d  f rom t h e  i n t e g r a l s  f o r  t h e  v o r t e x  
momentum G* and t h e  moment o f  momentum J* :  

G* ~- ~ ~*ydxdy = const, J*--~ y ~*r3drdO = ( 
c o n s t  6. 1 ) 

% % 

(m* is the total circulation). 

It appears that for plane-parallel flow, the integral G O (5.2) is valid even in the case 
of nonlinear equations. In order to prove this conclusion, first consider separately the 
layer ~n(Yn_1 < y < Yn) with circulation ~n" The superposition of disturbances transforms 
~n to the curvilinear region T~(yn_ I + qn_l(x, t) < y < Yn + Nn (x, t)). For incompressible 
flow, the following equation is valid for any given n 

y ~ (x, t) dx = O. ( 6 . 2 )  

The contribution to the vortex momentum G* (6.I) from the integration with respect to ~ is 

a~  ydy dx = ~ - j l ( y ~  + n~)~-- (y~_~ + n._~)~l d~. 
\Yn--l+~n--1 

Now, considering (6.2) and neglecting terms independent of time, we find that this contribu ~ 

tion is proportional expression to the whose sum across all layers leads ~ - l )  dx~ 

to the equation G O = const (5.2), but already on the strength of exact equations of motion. 
This means that for plane-parallel flows with piecewise linear velocity profile U(y), the 
sufficiency condition for nonlinear instability is that the function ~(y) be monotonical. 

The nonlinear analog of the integral J0 (5.4) for circular flow with piecewise constant 
vorticity is constructed along the same lines. Firstly, the layer Tn(rn_ I < r < r n) with 
circulation a n is independently analyzed. The superposition of disturbances transforms T n 
into a curvilinear region T~(rn_ I + Nn_1(0, t) < r < r n + Nn(6, t)). The following equation 
is valid for any n for any incompressible flow 

2~ 

I + dO = 0. ( 6 . 3 )  
0 

Computation of the contribution to J* (6.i) from the integration along ~ and summation of 

these contributions using (6.3) lead to 
2~ 

2 ( J * - -  J~) = ~, [~]n ~ N~ (2r~ + Nn) 2 dO, ( 6 . 4 )  
n 0 
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where J~ is the value of the integral J* in the absence of disturbances Nn-0; [~]n = ~(rn + 
0) - ~(r n - 0). Linearization of the equations of motion reduces (6.4) to (5.4). Nonlinear sta- 

2~ 

bility follows from the inequality 2 (J*-- J$) ~ [~]nr~ j r~ 7~d@, which results from (6.4) and 

the inequality INn[ < rn, which is the result of the definition of N. Thus, the monotonical 
behavior of ~(r) is a sufficient condition for nonlinear stability of flows with circular 
streamlines and piecewise constant circulation. In particular, Kelvin's vortex is stable 
with respect to finite disturbances. 

In conclusion, the following points are made. 

i. The proof of stability for the class of plane disturbances has limited physical 
significance. Here it is possible to say only that the mechanism of the generation of plane 
disturbances is not effective, and flow instability, if it exists, is three-dimensional in 
nature. 

2. All the results obtained here are applicable to axisymmetric flows and flows with 
helical geometry. Corresponding conclusions on stability are those given in [13, 14]. 

3. The practically important additional class of stable flows will be expressed as 
cases of negative definite integrals I (3.3) and (3.6). This class includes, e.g., channel 
flow, Hill's vortex, and Kirchoff's elliptic vortex. However, the value of the constant in 
the determination of the negative definitenes depends on the flow geometry. Its computation 
is an independently serious problem. 

4. A variational principle, similar to that presented in [15], lies as the basis of the 
conclusions made above on stability. In obtaining it, it is necessary to remember that the 
condition of "equivoricity" is formulated separately for each fluid region where the vor- 
ticity varies continuously. On the basis of (2.8), functions transforming T+ on ~• can be 
chosen to be identical on R. Interals I, G, and J arise in this case as secondary varia- 
tions in energy, momentum, and moment of momentum (6.1). At the same time, it is necessary 
to emphasize that in the present work, the linear stability is investigated in relation to 
arbitrary disturbances, and not only for "equivortices." 
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